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ABSTRACT 
Nonlinear transmission of disease between infected and uninfected prey was studied using a prey-predator 
eco-epidemiological model. The interaction of predators with infected and uninfected prey species depends on 
their numerical superiority. Harvesting of both uninfected and infected prey was carried out, and stability analysis 
was carried out for equilibrium values. Using the parameter µ, the death rate of infected prey as a bifurcation 
parameter, it is shown that Hopf bifurcation could occur. The theoretical results are compared with numerical 
results for different sets of parameters. 
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INTRODUCTION 
 
In eco-epidemiology ecological and epidemiological 
topics are studied simultaneously (Chattopadhyay and 
Arino,1999; Chattopadhyay and Bairagi, 2001; Hadeler 
and Freeedman, 1989; Venturino, 2002), and a 
combination of an epidemic model and an ecological 
model is called an eco-epidemiological model. There has 
been great interest over the last few decades three 
different types of predator-prey interaction (a) where the 
prey population is infected, (b) where the predator 
population is infected and (c) where both predator and 
prey populations are infected. It has been verified 
experimentally that infectious diseases, regulate animal 
as well as human populations. This has become an 
interesting area of research, and mathematical models 
have been widely used to understand and analyze the 
spread and control of infectious diseases. Hseih and 
Hsiao, (2008) in a study of predator-prey interaction 
where both species were infected, found conditions under 
which a disease is wiped out from an eco-system and both 
species survive. Under normal conditions, if a predator 
feeds on infected prey extensively, then the predator 

population is driven to extinction. However, they 
discovered threshold level at which disease would 
become endemic in an ecosystem. Packer et al. (2003) 
determined that infection in a prey population is reduced 
by predation. After removing predators from different 
systems, Sih et al. (1985) proved that in 54 out of 135 
systems, the proportion of prey infected by diseases 
declined. Findings by Hudson, (1992) also confirmed 
same that predator populations help maintain the prey 
population. Das et al. (2009) discussed a model where 
both predator and prey populations were infected by the 
same and different viral diseases and the predator 
population died not become infected by consuming 
infected prey. This was due to enzymatic activity and prey 
cells becoming incapable of transferring the infection to 
the predator population. They found that by controlling 
the predation of susceptible and infected prey, a system 
can become disease free. 
In a predator-prey environment, if the disease spreads 
among prey, predators can feed on either uninfected prey 
or infected prey, which may become either easier or more  
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difficult to capture by predators (Holmes and Bethel, 
1972; Murray et al., 1997). There are biological reasons 
for assuming both situations, firstly since the hunting of 
diseased, i.e., weaker individuals, makes their capture 
easier. On the other hand, the nutritional value of 
uninfected prey is certainly higher than of infected prey. 
The ingestion of diseased prey can have a negative 
impact on the predator population. Many field studies and 
experiments confirm that predators consume a 
disproportionately large number of infected preys 
(Hudson et a., 1992; Cohn, 2002; Moore,2002;Schaller, 
1972). Infected prey often lives close to the water surface 
or on top of vegetation for more oxygen and hence 
become more vulnerable to predation (Frind, 2002; Kaiser 
and Salton, 1999). The presence of parasites in prey 
populations can enable both predator and prey 
populations to coexist. Predators cannot sustain stable 
populations in the absence of the parasite because 
predators are able to more easily catch infected 
individuals when the prey species are weakened due to 
infection. Hence predator and prey population are able to 
coexist if there is a certain level of infection in the prey 
population (Freedman et al., 1987). 
Consumption of infected prey in the predators’ diet has 
often been high because predators can capture them with 
less effort. When the infected prey population starts 
declining, then predators are forced to switch towards 
other types of susceptible prey. The switching feeding 
behaviour of predators with more than one source of food 
has been discussed by many researchers (Tansky, 1978; 
Mukhopadhyay and Bhattacharyya, 2009; Khan et 
al.,1998,2004; Hotopp et al.,2010). However, here, it is 
reconsidered in the context of eco-epidemiology. 
Experimental studies have verified that predation of 
infected prey is reduced if they are treated 
(Mukhopadhyay and Bhattacharyya, 2009). Several 
authors studying eco-epidemiological mathematical 
models have described predators switching abundant 
prey populations, easily catchable infected prey 
populations, infected prey refuge, ratio dependent 
functional responses, and external sources of disease 
(Haque and Venturino, 2006; Pal and Samanta, 2010; 
Kundu, 2006;Greenhalgh and Haque, 2007;Haque and 
Venturino, 2008,2009). In all these models, the authors 
assumed that the infection affects the prey population 
only and the disease transmission follows the simple law 
of mass action with a constant rate of transmission. They 
also assumed that predators consume either uninfected 
prey or infected prey. Haque and Greenhalgh, (2010), on 
the other hand, examined a predator-prey model where 
disease spreads among the prey population and 
predators were found not to consume the infected prey. 
In line with above research, this study focuses the rate of 
predation on both susceptible and infected prey species. 
To the best of my knowledge, all authors, except (Naji 
and Mustafa, 2012) consider disease transmits according 
to the simple law of mass action with a constant rate of  
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transmission. Naji and Mustafa, (2012) examined an eco-
epidemiological model with a nonlinear incidence rate 
and   predator  switching. The  model we   consider  here  
differs from this and other previous models in three ways. 
(i) Measuring non-linear disease transmission and the 
inhibition effect on the behaviour of prey when there is an 
increase in the number of infected individuals. 
(ii) Switching by the predator to uninfected and infected 
prey depending on numerical superiority. In our model, 
switching by predators is stronger than that discussed by 
Naji and Mustafa, (2012). 
(iii) Harvesting of both uninfected and infected prey 
species. 
 
The model and assumptions 
 
A predator-prey interaction is studied where the 
prey species breeds logistically in the absence of 
a predator, and it is represented mathematically 
by  
 
 

 
 
 

 
Where r is the growth rate of prey species, S is the 
population density of uninfected prey species, and I 
represent the population density of infected prey species. 
The uninfected and infected prey species share the same 
sea or pasture and compete for the same resources, so k 
is the environment carrying capacity of prey species. n 
and m are the hunting efficiency of the predator towards 
uninfected and infected prey species respectively. 
Predator capture disease preys easily because due to the 
disease, they become inactive and so we are assuming m 
> n. We are assuming that only uninfected prey species 
have the capability of reproducing while infected species 
either do not have the capability of reproducing or die 
before attaining this age. When uninfected prey species 
come in contact with infected prey species, they become 
infected, according to a non-linear incidence rate of the 
form 
 

 
 
denote inhibition effect of the behavioural change of 
uninfected prey when they come in contact with infected 
prey and λI represent the infection force of the disease. a 
is the half saturation constant, and the parameter α 
represents the predator preference rate of I. The terms 
 

 
 



 
 
 
 
have the property of switching, that is, if the population of 
uninfected prey species is higher than infected prey 
species, then interaction  between  predator  and infected 
prey species will be high vice versa if the population of 
uninfected prey species is higher than infected prey 
species. Hence the predator will switch to the kind 
of prey species having numerical superiority. Zero 
denominator in switching terms is meaningless, 
and we can tell when the prey population will 
disappear the predator population will also vanish. 
Species are discrete and can be treated as zero if 
their densities become very small. We are 
assuming that conversion factor n and m 
represent the number of newly born predators for 
capturing each uninfected and infected prey 
species and these conversion factors are same as 
hunting efficiency. The interaction on infected 
prey will contribute positively to the diet of the 
predator though protein intake will be less than 
what predator will get by feeding uninfected prey. 
Since infected prey is toxinicated so by feeding 
infected prey, there will be an increase in the 
mortality rate of the predators which is denoted by 
d. µ is the death rate of the infected prey species. 
q1 and q2 are the catch-ability rates of catching 
uninfected and infected prey species respectively, 
where q1 < q2 since it is much easier to catch 
infected prey species than uninfected prey 
species because due to infection, infected prey 
become less active. E is the harvesting effort. We 
assume that all the parameters in the model are 
positives and that S(0) > 0, I(0) > 0, P≥ (0). 
Taking into account the above assumptions the 
basic mathematical model is of the form: 
 

 
 

 
 

 
 
The solution of equations (2.1), will exist and 
unique within the region S > 0, I > 0 and P≥0 
since the equations are continuously differentiable 
within this region (Arnold, 1971). 
 
Boundedness 
 
Theorem 1: The uninfected and infected prey is always 
bounded       above.        Proof   from     first      two 
equations        of       the          system        (2.1),  we get 
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Where  
 

 
If 
 
S +1 < k 
 
Let k=k1 +k2 

 

Considering S < k1, and I < k2. 
 
Hence 
lim S(t) < k1, 
t→∞ 
and 
lim S(t) < k2, 
t→∞ 
So prey population is always bounded above 
 
Theorem 2: If q is the minimum of q2E and d then 
trajectories of the system (2.1) are bounded above. 
 
Proof 
 
Let 
 
l = S + I + P. 
 
Take its derivative along the solution of (2.1), we 
get 

 

 

 
 

 

 
 
now, 
 
 

 



 
 
 
 
or 
 

 
Where 
 

 
 
So 

 
Thus for 

 
So, all the solutions of the system (2.1) which start in R

3
+
 

are bounded. 
 
Predators interaction with susceptible prey 
 
By field study, it is verified that the interaction of 
the predator with infected prey is 31 times higher 
than the interaction of predator with uninfected 
prey (Lafferty and Morris, 1996). Using this 
experimental fact, it is quite natural to ignore the 
interaction of predator with susceptible prey, and 
so the model (2.1) simplifies to: 
 

 
 
Here we are assuming that the growth rate of 
susceptible prey is high to replace the infected 
prey population otherwise whole prey population 
will become infected and ultimately predator-prey 
population will become extinct. 
 
Analytical solution 
 
We get three possible biologically meaningful 
equilibria by setting time derivative to zero. 
 

 
 
By      using        the     second         equation          
of            the        system        (4.1),       we    get  
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and by substituting S̄  in the first equation of the 
system (4.1), we get 
 

 
 
It can be written as 
e0I

2
 + e1I + e2 = 0,            (5.1) 

 
Where 
 

 
 
The equation (5.1) has one real positive root if 
 

 
 

 
 
Where 
 

 
 

 
 
and 
 

 
 
Using equations (5.2) and (5.4), we get 
 

 
 
We can verify from the first equation of (4.1) that r 
> q1E. Hence, from Descartes sign rule the 
equation (5.5) has unique positive roots, and so 
the    coexistence equilibrium  of  the system (4.1) 



 
 
 
 
will be unique. 
 
Stability analysis 
 
Stability of the system around the equilibrium points    

Ē0, Ē1, and Ē2 

 

It can be easily shown that equilibrium points Ē 0, 

Ē 1 are unstable, and Ē 2  is neutrally stable. The 

characteristic equation of the stability matrix is 
 

 
 

Hence the equilibrium Ē0  will be unstable because of 

one of the eigenvalues 
r − q1E > 0, and other two eigenvalues −(µ + q2E) and −d 
are negatives. 

Stability analysis of the system (4.1) around Ē1 = (S̄ , 0, 

0). The stability matrix leads to the characteristic 
equation 
 

 
 
Eigenvalues are  

 

 
 

Hence, the equilibrium Ē 1 will be unstable. 

 

Stability analysis of the system (4.1)around Ē 2 = (S̄ , Ī , 

0). 
The associated characteristic equation is 

 

 
 
Eigenvalues are 

 

 
 
and 

 

 
 

As a result, the equilibrium Ē 2 will be neutrally 

stable. 
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Stability of the system around the equilibrium point 

Ē
3
 

 
The stability matrix about the co-existence 
equilibrium Ē3  of the system (4.1) is given by 
 
 

 
 
 
This leads to the characteristic equation 
 
 

 
 
With 
 
 

 
 
Equation (6.2) can be written in the form 
 
 

 
 
 
where 
 
 

 
 
The Routh-Hurwitz stability criteria for the third order 
system is (a) a1 > 0; a3 > 0, 
(b) a1a2 > a3, 
Hence, the coexistence equilibrium will be locally stable 
to small perturbations if 
 a1a2 > a3, 
or 
 
 

 
 
Now, 



 
 
 
 

 
 

 
where 

L = Ī  + S̄ , and  H = a + α Ī . 
There are only two negative terms in (6.5). To 
show that sum of all terms in (6.5) is positive, we 
compare negative terms with positive terms. 
 
First, take 
 

 
 

 
 

 
 
Now choose the terms 
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if 
 

 
where 

k > L and  mP̄  > 1. 
 
The natural growth rate of the fish population will 
be less than unity because the growth rate more 

than on is true for bacteria and viruses. mP̄  > 1 
because the number of a newly born predator by 
consuming infected prey will be more than one. 
 

Theorem 3 Suppose Ē3 = (S̄ , Ī , P̄ ) exists and  

 

 
 

 then coexistence equilibrium Ē 3 will be asymptotically 

stable. 
 
Hopf bifurcation analysis 
 
Taking µ as the bifurcation parameter we discussed 
the Hopf bifurcation for the system (4.1). The 
characteristic equation (6.2) which arise for 
coexistence equilibrium have positive coefficients a1, 
a2, a3 and have two purely imaginary roots if a1a2 = 
a3 for some value of µ ( say µ = µ̄  ) . 
A unique µ will exist to satisfy the equation a1a2 = 
a3. Therefore, there is only one value of µ at which 
we have Hopf bifurcation. The characteristic 
equation (6.2) cannot have real positive roots in the 
neighborhood of µ̄ . For µ = µ̄  the characteristic 
equation (6.2) can be written as 
 

 
 
which had tree roots 
 

 
 
The general roots are in the form 
 

 
 
Using Hopf bifurcation theorem [?] to (4.1), we will  



− 

 
 
 
 
use the transversality condition. 
 

 
 
Using  
 

 
 
into the equation ( 6.2) and calculating the 
derivative, we get 
 

 
 
Where 
 

 
 
if SU + RT ƒ= 0 at µ = µ̄ , then 
 
 

 
 
Now from equation (7.4) 
 

 
 
So 
 
SU + RT ƒ= 0 
 
If 
 

 
 
or 
 

 
 
or 
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where last two terms are negative, and the rest of 
the terms in (7.8) are positive. We are not 
considering the term  
 

 
 
in (7.8) which in common in all terms. Since dµ at a point 
of Hopf bifurcation a1a2 = a3. So we replace last two-term 

of (7.8) by last two terms of (6.5) by multiplying by P̄ , we 
get 
 SU + RT ƒ= 0, 
If 
 

 
 

Theorem 4 Suppose Ē 3 = (S̄ , Ī , P̄ ) exists and 

inequality (7.9) satisfies, then the system (4.1) 
exhibits a Hopf bifurcation for a suitable value of µ in 
the neighborhood of µ̄ . 
We used a Runge-Kutta -Fehlberg fourth-order to 
fifth order method to integrate numerically the 
system (4.1). For simulation, all used 
computerically generated hypothetical parameters 
given in (Table 1). The initial values are all slightly 
perturbed equilibrium values. The numerical 
results show that there are two Hopf bifurcations 
for this system (4.1) where stable behaviour 
changes to unstable as the parameter µ is varied. 
The first bifurcation point is approximately when µ 
= 0.1215 and the second bifurcation point is 
approximately when µ = 0.1446 as illustrated in 
(Figure 1) which contains a plot of a1a2 a3 as a 
function of the parameter µ. Figure 2 shows a 
stable solution for the system when µ = 0.121 
while (Figure 3) shows an unstable solution when 
the value µ = 0.122 is used. Figure 4 shows an 
unstable solution for the system when µ = 0.144 
while (Figure 5) shows a stable solution when the 
value µ = 0.145 is used. 
 
Predator interact with both infected and uninfected 
prey 
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Table 1. Representative set of parameter values used for 
model equation (4.1). 
 

q1 q2 E r k m a α λ d 

0.0038 0.03 0.5 0.1 200 0.5 400 2 13.96 0.5 
 

q1, q2 , E , r , m , α, λ and d have a units of ”per day”, while a, K, S, I, and 
P have units of ”number per unit area.” 

 

  
 

Figure 1. Plot of a1a2 − a3 as a function of the parameter µ. 

 

 
 

Figure 2. Hopf bifurcation with respect to µ when µ = 0.121. 

 
 
In this section we are studying a generalized model 
(2.1) where predator consumes both infected and 
uninfected prey through the interaction of predator 
with infected prey will be much higher than 
uninfected prey. The reason behind this is that 
infected prey due to disease become slow and at 
the time of death come to the surface of the sea 
and become more vulnerable to a  predator. 
 
Stability of the system around the equilibrium points 

Ê0, Ê1, and Ê2 
 

It can be easily shown that equilibrium points Ê0, 

Ê1 are unstable and Ê2  is neutrally stable. Stability 

analysis of the system (2.1) around Ê0 = (0, 0, 0).  The 

characteristic equation of the stability matrix is  
(ξ − (r − q1E))(ξ + (µ + q2E)))(ξ + d) = 0. 

Hence the equilibrium Ē0 will be unstable because one of 

the eigenvalues r − q1E > 0 and other two eigenvalues 
−(µ + q2E) and −d are negative. 

 

Stability analysis of the system (2.1) around Ê1 = (Ŝ, 0, 

0) 

 
The stability matrix leads to the characteristic equation 
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  Figure 3. Hopf bifurcation with respect to µ when µ = 0.122. 

 
 

 
 

Figure 4. Hopf bifurcation with respect to µ when µ = 0.144. 

 
 

 
 

Figure 5. Hopf bifurcation with respect to µ when µ = 0.145. 
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Eigenvalues are  
 

 
 

If nŜ < d. Hence, the equilibrium Ē1 will be unstable. 

 

Stability analysis of the system (2.1) around Ê2 = (Ŝ, 0, 

P̂)  
 
The associated characteristic equation is 
 

 
 
Eigenvalues are  
 

 
 

As a result, the equilibrium Ē 2 will be unstable 

stable. 
 

 
Equilibria 
 
The system (2.1) has the following equilibria: 
 

 
 

equating     above    two  values of  P̂,  we     obtain 

 

 
 
Stability 
 
The stability matrix of coexisting equilibrium is 
 

 
 
The characteristic equation associated with the 
co-existing equation is 
 

 
 
Where 
 

 
 

where,  A = Ŝ + Î; B = a + αÎ. 
 

 
 

Using Routh-Hurwitz stability criteria of the third 
order    system,  we    can say that the 
coexistence           equilibria      is        stable       if 
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Table 2. Representative set of parameter values used for model 
equation (2.1). 
 

q1 q2 E r k n m a α λ d 

0.0038 0.03 0.5 0.1 200 0.01 0.5 400 2 13.96 0.5 

 
 

 
 

Figure 6. Plot of a1a2 − a3 as a function of the parameter µ. 

 
 

 
 

Figure 7. Hopf bifurcation with respect to µ when µ = 0.137. 

 
 

 
 
and  
 
LNS + Q(RT − L

2
 − LQ) > M (LP + PQ + RS) + NPT. 

(9.6) 
 
Numerical results 
 
The system (2.1) has been integrated numerically using a 

Rung-Kutta-Fehlberg fourth-fifth order method. Table 2 
contains a representative set of values used for the 
hypothetical parameters in the simulation. The numerical 
results show that there are two Hopf bifurcations for this 
system (2.1) where stable behaviour changes to unstable 
as the parameter µ is varied. The first bifurcation point is 
approximately when µ = 0.1378 and the second bifurcation 
point is approximately when µ = 0.1592 as illustrated in 
(Figure 6) which contains a plot of a1a2 a3 as a function 
of the parameter µ. Figure 7 shows a stable solution for 
the system when µ = 0.137 while (Figure 8) shows an 
unstable solution when the value µ = 0.138 is used. 
Figure (9)    shows   an  unstable  solution for the system  
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Figure 8. Hopf bifurcation with respect to µ when µ = 0.138. 

 
 

 
 

Figure 9. Hopf bifurcation with respect to µ when µ = 0.159. 

 
 
 
when µ = 0.159 while (Figure 10) shows a stable solution 
when the value µ = 0.16 is used. 
 
 
Asymptotic stability of co-existing equilibrium 
 
Theorem 5 If the uninfected and infected prey 
population satisfies the equation of a straight line S = 
mI where  

 

 
 
then  co-existing   equilibrium of    the    (2.1)    will    be 

asymptotically stable. 
 
Proof  
 
Let us consider a positive definite function 
 

 
 
the bounded region D. Since S, I, and P are positives in 
the bounded region D. The derivative of the equation 
(11.1)    along        the       solution      of    the   system    
of                equation           (2.1),             we             get 
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Figure 10. Hopf bifurcation with respect to µ when µ = 0.16. 

 
 
 

 
 
At equilibrium, 
 
 

 
 
and 
 

 
 
so 

 

 
 
Let 
 

SÎ  = IŜ, 
 
or 
 

 
 
Then 

 
 
and we know that, 
 

 
 
So 



 
 
 
 

 
 

Hence, Ê 
3 = (Ŝ, Î, P̂) will be asymptotically stable for S = 

mI  
 
Where 
 

 
 
for all t ≥ 0. 
 
 
Conclusion 
 
We studied the dynamical behaviour of a three-
dimensional deterministic predator-prey model 
consisting of three nonlinear ordinary differential 
equations corresponding to uninfected and, infected 
prey populations, and a predator. The predator can 
feed on other kinds of prey, but instead of choosing 
individuals at random the predator consumes a 
member of either the uninfected or infected prey 
population proportional to their abundance. The 
predator feeds preferentially on the most numerous 
prey species, and hence upon reduction of the 
number of infected prey due to heavy predation, the 
predator begins to target uninfected prey. This 
behaviour is termed predator switching. In the first 
model, we assume that predators prey 
preferentially on infected prey because it is verified 
by numerous field studies that predators catch 
infected prey 31 times more often compared with 
uninfected prey. The second model deals with the 
situation where predators prey on both uninfected 
and infected prey according to their numerical 
superiority. In this model, the predator is more 
likely to consume infected prey rather than 
uninfected prey, due to infected prey becoming 
slow and weak and coming to the surface of the 
vegetation for oxygen. These models have been 
investigated using stability, Hopf bifurcation, and 
numerical analysis. 
Zero equilibrium in both models is unstable, i.e. 
the population will likely never be extinct. Axial 
equilibria Ē1 and Ê   1  which contains only uninfected 

prey will exist if 
 
 

 
 
Ē1 and Ê 1 will exist for all parametr ic   va lues, but  
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with harvesting Ē1 and Ê   1  exists only if the result of  

harvesting has a lower threshold value depending 
on the ratio of the growth of uninfected prey and 
the catchability coefficient of uninfected prey. The 
predator and prey population will equilibriums in a 
system (4.1), so it becomes asymptotically stable 
around the co-existing equilibrium if the ratio of 
uninfected and infected prey satisfies an equation 
of a straight line 

 

  
 
is the slope of the straight line Hopf bifurcation 
analysis has been carried out for both models with 
respect to the parameter µ (death rate of infected 
prey), Hopf bifurcation has helped us in finding 
the existence of a region of instability in the 
neighborhood of coexisting equilibrium where 
both uninfected and infected prey species with 
predators will survive despite undergoing regular 
fluctuations. However, the conditions of Hopf 
bifurcation may or may not be satisfied due to a 
change in the parameters. 
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